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We estimate the set dimension and find bounds for the set entropy of a cellular automaton model
for single lane traffic. Set dimension and set entropy, which are measures of the information content
per cell, are related to the fractal nature of the automaton [1, 2] and have practical implications
for data compression. For models with maximum speed vmax, the set dimension is approximately
log(vmax+2) 2.5, which is close to one bit per cell regardless of the maximum speed. For a typical
maximum speed of five cells per time step, the dimension is approximately 0.47.

PACS numbers: 89.40.+k, 5.40.-a, 89.75.Kd

I. INTRODUCTION

In [3] Nagel and Schreckenberg describe a cellular au-
tomaton model for traffic flow that resembles traffic in
real life [4, 5]. In particular, the TRANSIMS project
[6] has adapted this model to simulate traffic in entire
cities. Recently, TRANSIMS has focused on modeling
the city of Portland, Oregon, but due to the size of Port-
land, this simulation generates a large amount of data
(approximately one terabyte of state evolution informa-
tion for a 24-hour simulation), making data compression
a necessity. Understanding the possible allowed configu-
rations of the automaton (i.e., the set entropy) furthers
the construction of efficient data compression schemes.

Claude Shannon introduced information theory as a
way to describe the information content in a given sys-
tem [7]. Set entropy measures the number of possible
states occurring in a cellular automaton; set dimension
is the limit of the set entropy as the spatial extent ap-
proaches infinity [2]. To measure this quantity for cellular
automata, suppose there are N letters in our alphabet.
Then for a cellular automaton of dimension k (the num-
ber of lanes on the roadway, in the automaton considered
here) and size n (the length of the roadway), there are
Nnk possible states for the cellular automaton. Let |kAn|
be the number of states that may actually occur in the
automaton, given the rules constraining its evolution in
time. The set entropy, s(k, n), is given by

s(k, n) =
logN |kAn|

nk
=

ln |kAn|
lnNnk
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and the set dimension, d, is given by

d = lim
n→∞

s(k, n) = lim
n→∞

logN |kAn|
nk

= lim
n→∞

ln |kAn|
lnNnk

;

(1)
refer to [2, 7, 8] for more details.

In this brief report, we construct bounds for the set
entropy and estimate the set dimension for a single-lane-
roadway (k = 1) model [3, 5, 6].

II. DESCRIPTION OF THE MODEL

In the single lane model, the system is a grid of n
sites (or cells), c0c1 · · · cn−1. Each cell, ci, can either be
empty, contain a stopped vehicle (with speed 0), or con-
tain a moving vehicle with speed v. For a vehicle x, let
cx be its position, and vx be its velocity. This informa-
tion is encoded in the cellular automaton by the number
vx in cell cx. Let ∆ (the “gap”) denote the amount of
space between vehicle x and the vehicle directly in front
of x. The following three rules are used to determine the
velocity of each car at the next time step [3, 5, 6].

R1 Accelerate if you can: if vx < ∆ and vx < vmax, then
vx := vx + 1.

R2 Decelerate to avoid rear-end collisions: if vx > ∆,
then vx := ∆.

R3 Stochastic behavior: if vx > 0 and r < pd, then
vx := vx − 1.

In R3, pd is the probability that a vehicle will slow
down for no reason, and r is a uniform random variable.
The rules can be modified to allow for individual cars to
have different preferred speeds, but for our purposes a
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universal maximum speed, vmax, and deceleration prob-
ability, pd, suffice. To change states at a given time step,
first determine the velocity of each vehicle x, then move x
from cell cx to cell cx+vx . Thus, if the pair of cells labeled
“5,0” occurs in the automaton, the 5 and the 0 represent
the speed of the vehicles based upon the previous state.

III. BOUNDS ON ENTROPY

Let An denote the set of one-lane blocks of n cells that
may occur in an automaton. We refer to these as al-
lowed blocks. We are interested in computing the size,
|An|, of An for any n. However, finding a closed form for
|An| proves to be very difficult, even after discovering a
successive listing for the blocks that can never occur in
the automaton (see [8] for the listing). Thus, in order to
compute the dimension, we find upper and lower bounds
for |An| which tend similar limits as n → ∞. (The dif-
ference between the limits turns out to be approximately
0.13.) Other work on allowed states in traffic models
has been performed by Schadschneider and Schrecken-
berg [9], who identify the “garden of Eden” states for the
cases vmax = 1 and vmax = 2.

We begin by making two observations about the driv-
ing rules. First, suppose at time t there is a moving car
with speed v in cell ci. This implies that at time t−1 the
vehicle was in cell ci−v. In order for the vehicle to move
at speed v, the cells ci−v, ci−v+1, . . . , ci−1 must have been
empty. Furthermore, these cells must remain empty at
time t, because any vehicle behind the car will never move
forward more cells than the gap between the two cars at
time t− 1. For the second observation we again suppose
at time t there is a car x with speed vx in cell ci, but
now we suppose that there is a car y in cell ci+1 with
speed vy. We claim that vy = 0. This follows because
speed vx ≤ ∆. Thus, vehicle x can move no further than
the cell behind vehicle y at time t − 1. If vehicle y were
moving there would be a gap between vehicles x and y
at time t− 1.

Suppose B = c0c1 . . . cn−1 is an allowed block of size
n. Our upper and lower bounds are based on the above
observations illustrated for block B below:

1. If there is a car in cell cm, 0 ≤ m < n − 1, then
cell cm+1 is either empty or contains a vehicle with
speed 0. In any case, there are only two choices for
cell cm+1, provided there is a car in cell cm.

2. If there is a car in cell cm with speed v, then all
cells cm−1, cm−2, . . . , cm−v must be empty.

We wish to find an upper and lower bound for |An+1| in
terms of |An|. Let An(◦) be the set of allowed blocks of
length n + 1 that end with an empty cell. Similarly, let
An(s) be the set of blocks of length n + 1 where the last
cell contains a vehicle with speed s. We first note that

An+1 = An(◦) ∪
vmax⋃
s=0

An(s) ,

which yields

|An+1| = |An(◦)|+
vmax∑
s=0

|An(s)| .

Since an empty cell may be preceded by an empty cell
or a vehicle of any speed, |An(◦)| = |An|. Similarly, a
vehicle of speed 0 may also be preceded by an empty cell
or a vehicle of any speed, hence, |An(0)| = |An|.

Let us now consider an allowed block of length n + 1
which has a 1 in cell cn (recall our blocks begin with cell
c0). Cell cn−1 must be empty, but cell cn−2 may be empty
or contain a car of any speed. Thus, |An(1)| = |An−1|.

Turning to An(2), we consider the allowed blocks of
length n+1 where cell cn contains a 2. In this case both
cell cn−1 and cell cn−2 must both be empty. Cell cn−3

is permitted to either be empty or contain a vehicle with
speed greater than 0. A car of speed 0 in cell cn−3 is
a violation of Observation 1, as the state “0, ◦, ◦, 2” can
only arise from forbidden states “0, 2” or “0, 1” in the
previous time step (see [8] and [9]). Thus, |An(2)| =
|An−2| − |An−3|.

For An(s) with s > 2, the computation is much more
complicated. However, we note that cells cn−1, . . . , cn−s

all must be empty. As with the s = 2 case, cell cn−s−1

cannot contain a stopped vehicle. With speed s > 2 there
are more restrictions, but we will just note that in this
case: |An(s)| ≤ |An−s| − |An−s−1|.

Let us first use the following simple lower bound

|An+1| ≥ |An(◦)|+
2∑

s=0

|An(s)|

= |An|+ |An|+ |An−1|+ (|An−2| − |An−3|) ,

but we can simplify this further for easier computation
if we underestimate |An(2)| by considering only those
blocks with cells cn−1, cn−2 and cell cn−3 empty. This
gives |An(2)| ≥ |An−3|, so we now have

|An+1| ≥ Ln ≡ 2 |An|+ |An−1|+ |An−3| for n ≥ 4 . (2)

We now turn to the upper bound, using the above in-
formation:

|An+1| = |An(◦)|+
vmax∑
s=0

|An(s)|

≤ |An|+ |An|+ |An−1|+ (|An−2| − |An−3|)
+ (|An−3| − |An−4|) + · · ·
+ (|An−vmax | − |An−vmax−1|)
= 2 |An|+ |An−1|+ |An−2| − |An−vmax−1|
≤ 2 |An|+ |An−1|+ |An−2| .

This gives us an equation for the upper bound:

|An+1| ≤ Un ≡ 2 |An|+ |An−1|+ |An−2| for n ≥ 4 . (3)

To begin our entropy estimation, we first bound |An+1|
by simplifying the bounds in Eqs. (2) and (3):

2 |An| < |An+1| < 4 |An| for n ≥ 4 . (4)
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We would now like to combine Eqs. (3) and (4) to get
a better upper bound for |An+1| of the form ρ |An|.
(Bounds of the form ρ |An| are important because they
allow the calculation of entropy in the limit n → ∞.)
First notice that Eq. (4) implies that |An| < 1

2 |An+1|,
for all n. We now compute:

|An+1| ≤ 2 |An|+ |An−1|+ |An−2|

≤ 2 |An|+
1
2
|An|+

1
2
|An−1|

≤ 5
2
|An|+

1
4
|An|

=
11
4
|An| .

So we could now use 4
11 |An+1| < |An|, instead of

1
4 |An+1| < |An|, to get a better lower bound for |An+1|.
In fact, we can recursively improve lower and upper
bounds of the form am

−1 |An| < |An+1| < bm
−1 |An|,

where am and bm are successive improvements on the
bounds. We start with Eq. (4), which yields a1 = 1

2 and
b1 = 1

4 . From Eqs. (2) and (3), respectively, we obtain
the recursion relations

am+1 =
(
2 + bm + bm

3
)−1

,

bm+1 =
(
2 + am + am

2
)−1

.

We are interested in α = limm→∞ am and β =
limm→∞ bm. As am and bm are both monotonic and
bounded, both α and β exist. We hope of course that
α = β, because in this case the upper and lower bound
coincide. We are reduced to solving the following two
equations in two unknowns:

α =
(
2 + β + β3

)−1
,

β =
(
2 + α + α2

)−1
,

which can be solved numerically to obtain the following
estimates: α

.= 0.408704 and β
.= 0.388237, yielding γ ≡

α−1 .= 2.44676 and δ ≡ β−1 .= 2.57574. Thus we have
obtained the simple bounds

L∗n ≡ γ |An| < |An+1| < U∗n ≡ δ |An| for n ≥ 4 . (5)

Table I compares our bounds on |An| with an exact enu-
meration of the allowed cellular automaton states and
with the states observed in a computer simulation of the
cellular automaton.

IV. DIMENSION

With a maximum speed of vmax, there are N = vmax+2
possible symbols for each cell in the Nagel-Schreckenberg
traffic model. Thus, the set dimension is given by Eq. (1):

d = lim
n→∞

log(vmax+2) |An|
n

.

For the upper bound we have

|An| < δ |An−1| = δ2 |An−2| = · · ·
= δ(n−1) |A1| = δn−1 (vmax + 2) ,

so

d < lim
n→∞

ln
(
δn−1 (vmax + 2)

)
n ln (vmax + 2)

= lim
n→∞

[
(n− 1) ln δ

n ln (vmax + 2)
+

ln (vmax + 2)
n ln (vmax + 2)

]
=

ln δ

ln (vmax + 2)
.

The lower bound is computed similarly to obtain:
ln γ

ln(vmax+2) < d. Numerically, we now have

ln 2.44676
ln (vmax + 2)

< d <
ln 2.57574

ln (vmax + 2)

or

d ≈ ln 2.5
ln (vmax + 2)

Entropy, in general, is a measure of the “information
content” per site [2, 7]. In this case, for n sufficiently
large, the set A of allowed blocks is estimated by

A ≈ (Nn)d
.

In terms of bits, B ≡ log2 A = dn log2 N for n sites. Let
I represent the information content in terms of bits per
cell. Computing this, we obtain:

I =
log2 A

n
≈ d log2 N ≈ ln 2.5

lnN
log2 N = log2 2.5 .= 1.32 .

Thus, little more than one bit is needed to encode the
information contained in a single cell.

V. CONCLUDING REMARKS

We have bounded the set entropy and estimated the set
dimension for the cellular automaton used in the Nagel-
Schreckenberg model for single lane roads.

In the multi-lane case, symmetric lane-changing mod-
els [6, 10] are prevalent. Before changing lanes, a ve-
hicle typically must examine both the gap ahead and
the gap behind in the other lane to avoid collisions. In
such models, the lane changing rules do not limit the
states reachable by the dynamics: i.e., if the vehicles on
a particular segment of roadway have no preference for
changing lanes at a given time, then their dynamics at
that time does not depend on the configuration of vehi-
cles in other lanes, and any of the states of single-lane
traffic is possible. Depending on the exact form of the
lane-changing rules, however, more states than just the
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TABLE I: Comparison of the exact value of |An| with our lower bound, Ln, our upper bound, Un, the scalable bounds L∗
n and

U∗
n, and the states Sn observed in a computer simulation; here vmax = 5.

n |An| Ln Un L∗
n U∗

n |Sn|
1 7 7

2 19 19

3 49 49

4 126 126

5 320 308 320 309 324 320

6 811 785 815 783 824 811

7 2,045 1,991 2,068 1,985 2,088 2,045

8 5,145 5,027 5,221 5,004 5,267 5,144

9 12,930 12,655 13,146 12,589 13,252 12,920

10 32,474 31,816 33,050 31,637 33,304 32,423

11 81,529 79,923 83,023 79,456 83,644 80,813

12 204,651 200,677 208,462 199,482 209,997 200,443

13 ≥ 513,583 503,761 523,305 500,732 527,128 490,764

product of single-lane states may be possible. An ex-
ample of this is when a vehicle changes lanes to move
into a gap between two vehicles where a vehicle normally
would not be present. Thus |Ln|k can be used as a lower
bound for the the multi-lane case, but an upper bound
for it cannot be derived from Un. The number of possi-
ble multi-lane states in excess of |Un|k is relatively small,
so our single-lane estimate of the dimensions provides a
rough approximation for the multi-lane dimension.

To obtain optimal results in data compression, other
entropies are interesting. These involve the probability
of a given state occurring instead of just the possibility
of the state occurring as in set entropy. This allows one
to encode the most likely states with the fewest number
of bits. These probabilities are very difficult to compute

however, as they are extremely dependent on the traffic
density and the particular city street network. In some
cases, however, it may be possible to analyze these prob-
abilities using techniques such as Markov chains.
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